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time was spent in the many gradient descent optimizations initiated in
the process. In our implementation, the tree annealing optimization
serves in a limited way in that the tree structure described in [5]
does not become very large. However, tree annealing is still effective
in determining starting points for quasi-Newton optimizations and
each minimum is evaluated at approximately the cost of a single
quasi-Newton optimization.
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Quasi-Static Analysis of Shielded Microstripline
by a Modified Boundary Element Method

T. N. Chang and Y. T. Lin

Abstract—This paper presents a modified boundary element method for
analyzing the shielded microstrip-like structure. The boundary integral
equations are derived via the Green’s second identity with the adjoint
fields chosen to satisfy the boundary conditions along the outside shielding
conductor. Numerically, these result in a considerably reduced matrix
size compared to that using free space Green’s functions as the adjoint
fields. The computation time for off-diagonal element of the matrix can be
decreased by taking the Maclaurin series expansion forms of the infinite
sums. Results for microstrip line are found in good agreement with those
in the literature.

I. INTRODUCTION

The boundary element method has previously been applied to the
analysis of lines in a shielding box with and without a dielectric
substrate {11-[2]. An analysis of microstrip line with finite thickness
was presented in [3]. In this method, the wave equation is converted
to an integral over the boundary of the region of interest by way of
Green’s second identity. Although the free space Green’s function is
chosen as the adjoint field in [1]-{3], it is by no means the only choice.
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In f4], the Green’s function for the classical image problem was
employed. For a shielded structure, a unified approach to determine
the required Green’s function was suggested [5].

One disadvantage of the choice of free space Green’s function is
that the matrix size formulated by discretizing the boundary integral
equation is generally large since the whole shielding conductor
should be discretized [3]. In this paper, a modified boundary element
method is presented wherein the Green’s function is forced to satisfy
the boundary conditions along the shielding boundary. A boundary
integral results which is performed merely along the line where the
strip is located. Therefore, the required memory size will largely be
reduced. This newly adopted Green’s function involves a slowly-
convergent infinite series. However, the computation time is reduced
by application of the geometric-series method [6].

II. FORMULATION

The cross-section of a microstripline shielded by a perfect conduc-
tor is considered. The subdomain S, with contour I, (i = 1,2) is
homogeneously filled with a loss-free dielectric medium. Inside each
region S;, Laplace’s equation

Vi, =0 (1

holds, where ¢, denotes the electrostatic potential. Green’s second
identity over S, can be expressed as

//[wz(v2¢l)+¢z<v2pz>]dsl
- / [o2(36,/0n,) — 6,(Bp2/Om,)] dT, @

where ¢, is a suitable adjoint field and 3/0n. the derivative in
the positive normal direction. The free space Green’s function is
chosen for p, in [1]-[3] for boundary element formulation. The
disadvantage of this choice is that the boundary integral equation
must be performed on both contours I'y (= ABCDEFA) and
'y (= ABCGHFA). There results in a large memory size if the
boundary scale is considerably large. In this paper, each I', is divided
into two parts T'Y and I';. where the superscript g and 7 stand for
the ground and the remainder parts respectively. For example, we
have T'{ = CDEF and I'f{ = FABC. The suitable adjoint field
@, now can be chosen to satisfy the required boundary condition
on the ground plane. In the present case, the Green’s function for
a rectangular trough region [6] was chosen as the candidate. With
the coordinates shown in Fig. 2, two Green’s functions for the
homogeneous rectangular frough regions are needed. They satisfy
the following differential equations:

[0 0./ 82"+ [0%¢. /8y’
= — (1/e)d(z — =)0(y — v.)
where § is the Dirac Delta function. ¢; = ¢o€r, €2 = €, and (z,. ;)

is the source point in the ith region.
To facilitate understanding, ¢, is given by

i=1,2 (3a)

vl z,y/ w0, y:) = (2/7e,) Z(l/n)sin(mrwi/b) sin (nwx /b)
n=1

-sinh [(n7/b)f.] exp [(n7/b)g.]

where (fi.g91) = (y1.—y) for y > yi;(f1.q0) = (y,—y) for
y < y13(f2,92) = (B+ R — y,ys —h — h') for y > y,; and
(foog2) = (g2 —h— R,y —h — 1) fory < y2).

(3b)
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Note that ¢, = 0 along the ground part in each region. Judging
from the right-hand side of (2), the boundary integral path can now
be performed merely on the remainder (the interface plane) part.
Therefore, the memory size will largely be reduced.

Equation (2) can be put in the following matrix form once ¢, is
obtained and I'] is divided into M segments in each region.

[A)mrx (@ ]arxs = [Barxae[06. /6n.]arx1 4)

where [¢:] = [é},0%,---,6P.---,0M]T and [8¢,/0n.] =
[08Y/0n,, 062 /On,. -+, 8F [On,,++,0¢™M JOn,]T  respectively
represents the column matrix (¢ = 1,2) with ¢* and d¢”/0n, (p =
1.2,-.+, M) the values of the potential and its normal derivative
at the nodal point of the pth element. Denoting the elements of
[Ailnixas and [By]arxar by AF% and BP?, the elements mainly
involve the following computations

oo oo

Z csn (n€)/n and Z csn (nf)/n2 (5)

n=1 n=1

where csn represents sin or cos function, ¢ is the normalized -
coordinate with 0 < £ < 2a. For example,

a7 = (4 /7) S /s e,

n=1

-exp (—nwh/b) cosh (nwh/b)

- [cos (’I’lﬂ'(L’;_/b) —cos (nmzg /b)] (p# q)
AP =1

(6a)
(6b)

where (2p.h) and (z4.h) are the coordinates of nodal points of
the pth and gth elements respectively. z; = x; + (wq/2) and
z, = x4 — (wq/2), with wq the width of the ¢th element.

Following the procedures in [3], we can obtain the final boundary
matrix equation in the form

[A][X] = [B] @)

where [A] is a 2 M x 2M matrix, [ X contains the unknown quantities,
and [B] is the known right-hand vector. Note that T} is divided
into M segments in each region. The infinite sums in (6a) can
be simplified by the geometric-series method of reference [6]. For
example, (6a) is changed into:

AP = (2/7) Z(l/n)[sin(nnwp/b)cos (nmry [b)

n=1
— sin (nwx,/b) cos (nmzi)/b]
- exp (—2nmh/b) ®)

In this form, the sums are typically convergent within three digits
by taking less than 5 terms. Therefore, the computation time for
cach off-diagonal element calculation is compatible with that for off-
diagonal element calculation formulated using the free space Green’s
function. In the later case, calculation time is saved by use of four-
points Gaussian quadrature [2] or by way of pulse expansion with the
integrals solved analytically. However, the overall calculation time is
considerably larger since the required matrix size is much larger than
that in the present method.

The concept shown here is rather general. Many cases can be
treated simply by modifying the adopted Green’s function. For
example, symmetry conditions may be applied in deriving the even or
odd mode Green’s function satisfying 0w, /dn = 0 or p, = 0 in the
symmetrical plane while applying (2). Finite metallization thickness
can also be treated with a modified boundary contour as suggested
in [3].
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Fig. 1. Cross section of a shielded microstrip line.
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Fig. 2. Line source in a rectangular trough region. (a} For region 1. (b) For
region 2.
TABLE I

COMPARISON OF CHARACTERISTIC IMPEDANCE (Z,) AND NORMALIZED
GUIDED WAVELENGTH VALUES WITH RESULTS ORBTAINED BY
OTHER METHOD (DIMENSIONS IN MILS, b = 20Ah + w, k! = 10h)

Zo Mg/ Ao Z, gl o
w h e [7] [7] this method this method
(t=1) (t=2) (t=1) (t=2)
10 67 2.9 1659 0.693 168.9 166.8 0.694 0.693
15 14 47 672 0546 685 67.6 0.549 0.547
22 19 43 672 0.567 68.5 67.2 0.569 0.568
20 31 4.7 844 0554 86.6 84.2 0.553 0.553

TII. NUMERICAL RESULTS

Analysis of microstripline has been presented in the literature
extensively, For the simple structure shown in Fig. 1, calculations
by the present method are listed in Table I. As EM theory shows
that fields vary rapidly near strip-conductor edges. The adoption of
nonpniform discretization was also studied. We symmetrically bisect
the strip, and divide each half strip into p segments. Assume that
the width of the segment nearest to the strip edge is s and the
ratio of the width of any two neighboring segments is ¢. we have
s=w(l—t)/[2(1—¢t*)) fort > land 5 = w/2p for ¢t = 1. In our
calcplations, AB was divided into 14 segments, while BC and AF
were divided into 14 segments individually. Comparing to [7], it is
noted from Table I that results by nonuniform discretization (choose
t = 2) have more good agreement.

IV. CONCLUSION

A new modified boundary element method is applied to the
analysis of shielded microstripline. The new method is based on
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the choice of an adjoint field which satisfies part of the required
boundary conditions. In the numerical analysis, the resulting matrix
i1s considerably reduced (for example, compared with [3]). The
computation time is also largely reduced by taking the Maclaurin
series expansion forms of the infinite sums.

The formulation shown here is rather general. It can in principle be
applied to various structures involving inhomogeneous dielectric me-
dia (e.g., multiconductor transmission lines in multilayered dielectric
media). Finite metallization thickness can also be considered with a
modified choice of the contour as already suggested in [3].
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CAD of T-Septum Waveguide Evanescent-Mode Filters

Viadimir A. Labay and Jens Bornemann

Abstract— This paper presents a mode-matching-based design of
evanescent-mode waveguide filters with T-septum shaped metal inserts.
Owing to the wideband characteristics of the T-septum waveguide, the
proposed design constitutes a significant improvement over common
evanescent-mode filters with respect to both size reduction and stopband
behavior. The theoretical approach is verified at the example of a three-
resonator 8.8-GHz filter prototype of less than 3/4 inch length. The second
passband is beyond 27 GHz. Since the design procedure takes higher-
order mode interactions into account, good agreement between theory
and experiment is obtained over the entire measurement range between
8.2 and 40 GHz.

1. INTRODUCTION

Evanescent-mode filters are constructed from resonators within a
below-cutoff waveguide section and rectangular waveguide disconti-
nuities for connection to a standard-size input/output guide [1]-{5}.
The resonators are formed by introducing appropriate obstacles such
as capacitive screws [1], round posts [2], dielectric blocks {3], ridges
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[4] or E-plane fins [5] at suitable intervals along the below-cutoff
section. While in a given frequency band, the filter response improves
with reducing the size of the evanescent-mode guide, two problems
are immediately associated with the resonators of such filters. First,
their cross-sections need to be specifically shaped in order to allow
for a considerable reduction in cutoff frequency and, secondly,
simplicity in shape must be maintained to apply efficient computer-
aided modelling and design procedures. A structure, which satisfies
these requirements but has not yet been used in evanescent-mode
configurations, is the T-septum waveguide, e.g., [6].

Therefore, this paper focuses on the computer-aided design of
T-septum waveguide evanescent mode filters. By incorporating the T-
septum eigenfunctions [7] into a mode-matching-based design routine
[8], higher-order mode interactions at all discontinuities are included,
thus resulting in close agreement between predicted and measured
filter responses. Another advantage of this design is its remarkably
small size.

II. THEORY

The mode-matching technique is applied to calculate the general-
ized scattering matrix of the T-septum waveguide evanescent-mode
filter. The electromagnetic field in each longitudinal filter section is
derived from the z-components of the magnetic and electric vector
potential. Since the method of analysis together with the potential
and eigenfunctions of the rectangular waveguide sections are already
given in [8], only the T-septum waveguide cross-section functions
need to be presented here. Choosing the subregion division of the
cross-section according to Fig. 1 and applying electric and magnetic
wall symmetry at y = 0 and » = a/2, respectively, the cross-section
functions yield:

l
o fnfe-3)) (i)
Th(.t.y = A
) ; ! kﬁ, V14 by
{2m7r }
M—1 cos by
+ 5 Allcos (kL 2} — " 2
mz::o cos { z} A
N-1 Cos{b—n—nb—(y—bz)}
I A, —ba
+ ;::0 A, cos {kyy (2 —a2)} Vi
ey
= a Im
_ I 2 _ ¢ . o
T(r,y) = ;Dl cos{lw,(m 2)}81n{b1 }
M—1 . II
kimz} . (2
+ Z D{JSIHEU z} sm{ TZWZJ}
m:l xrm
N-1 . IIr
rrrsin {k] (z — ag)} . nw
+;Dn WIIT sin b—br_)(y_bg)
(2)

Amplitude coefficients A*, D* and separation constants kiL(i €
[I,II.1II]) are determined by the solution of the characteristic
matrix equation [7] and subsequent power normalization [8]. The
generalized scattering matrix of the overall structure is obtained by
cascading the individual scattering matrices of the discontinuities
and homogeneous sections involved, e.g., [8]. Sufficient convergence
behavior is obtained with 35 TE and TM modes, A = 20 expansion
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