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time was spent in the many gradient descent optimizations initia[ed in

the process. In our implementation, the tree annealing optimization

serves in a limited way in that the tree structure described in [5]

does not become very large. However, tree annealing is still effective

in determining starting points for quasi-Newton optimizations and

each minimum is evaluated at approximately the cost of a single

quasi-Newton optimization.
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Quasi-Static Analysis of Shielded Microstripline

by a Modified Boundary Element Method

T. N. Chang and Y. T. Lin

Abstract-This paper presents a modified boundary element method for
analyzing the shielded microstrip-tike structure. The boundary integral

equations are derived via the Green’s second identity with the tidjoint
fields chosen to satisfy the boundary conditions along the outside shielding

conductor. Numerically, these result in a considerably reduced matrix

size compared to that rising free space Green’s functions as tbe adjoint

fields. The computation time for off-diagonal element of the matrix can be
decreased by taking the Maclaurin series expansion forms of the infinite

sums. Results for microstrip fine are found in good agreement witlh those
in the literature.

I. INTRODUCTION

The boundary element method has previously been applied to the

analysis of lines in a shielding box with and without a dielectric

substrate [1]–[2]. An analysis of microstrip line with finite thickness

was presented in [3]. In this method, the wave equation is converted

to an integral over the boundary of the region of interest by way of

Green’s second identity. Although the free space Green’s function is
chosen as the adjoint field in [1 ]–[3], it is by no means the only choice.
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In [4], the Green’s function for the classical image problem was

employed. For a shielded structure, a unified approach to determine

therequired Green’s function was suggested [5].

One disadvantage of the choice of free space Green’s functions

that the matrix size formulated bydiscretizing the boundary integral

equation is generally large since the whole shielding conductor

should bediscretized [3]. In this paper, amodified boundary element

method is presented wherein the Green’s function is forced to satisfy

the boundary conditions along the shielding boundary. A boundary

integral results which is performed merely along the line where the

strip is located. Therefore, the required memory size will largely be

reduced. This newly adopted Green’s function involves a slowly-

convergent infinite series. However, the computation time is reduced

by application of the geometric-series method [6].

IL FORMULATION

The cross-section of a microstripline shielded by a perfect conduc-

tor is considered. The subdomain S, with contour r, (z = 1,2) is

homogeneously filled with a loss-free dielectric medium. Inside each

region Si, Laplace’s equation

v2$h = o (1)

holds, where d, denotes the electrostatic potential. Green’s second

identity over S, can be expressed as

/,1
[W(’@@L) + dh(v’p,)]dst

/
= [p, (8dt/t7nt) - d,(OPt/anL )1m, (2)

where p, is a suitable adjoint field and 3/& the derivative in

the positive normal direction. The free space Green’s function is

chosen for p, in [ 1]–[3] for boundary element formulation. The

disadvantage of this choice is that the boundary integral equation

must be performed on both contours 171(= AllCDEFA) and

rz (= ABC”GHF’.-i ). There results in a large memory size if the

boundary scale is considerably large. In this paper, each r, is divided

into two parts r: and 17;, where the superscript g and r- stand for

the ground and the remainder parts respectively. For example, we

have r? = CDEF and r; = FABC. The suitable adjoint field

y, now can be chosen to satisfy the required boundary condition

on the ground plane. In the present case, the Green’s function for

a rectangular trough region [6] was chosen as the candidate. With

the coordinates shown in Fig. 2, two Green’s functions for the

homogeneous rectangular trough regions are needed. They satisfy

the following differential equations:

[&p,/ELr’]+ [8’p’/t3y’]

= – (1/c,)6(z – z,)ti(y – y,) i = 1,2 (3a)

where 6 is the Dirac Delta function, cl = Eoer, eZ = co, and (x,, y,)

is the source point in the ith region.

To facilitate understanding, p, is given by

.

9’t(.r,tr/~L$ Y,) = (~/~eZ) ~(l/?~) sin (n7rTi/b) sin (n7rz-/b)
n:l

. sinh [(nrr/b)ft] exp [(nrr/fi).y,] (3b)

where (fl, ,ql) = (w, -:y) for J > ;yl; (.fl, gl) = (v, –’w) for

Y < Y1; (.t”2,92) = (~ + k’ – U,YZ – k – h’) for y > Y2; and

(.f2, s2) = (w2–~–~’$v–~–~’)foru S w)
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Note that #, = O along the ground part in each region. Judging

from the right-hand side of (2), the boundary integral path can now

be performed merely on the remainder (the interface plane) part.

Therefore, the memory size will largely be reduced.

Equation (2) can be put in the following matrix form once p, is

obtained and 17~ is divided into M segments in each region.

[A] MXMIA]MX1 = [B?]AIxLf[a4L/anL]A{xl (4)

where [#~] = [d~,d~,...,d~,... ,~~]~ and [~~,/i%J,] =

[@5j/f3n,, t?#f/f%t, !. o, ~q5~/~n,,. oI, 6’&/8n,]T respectively

represents the column matrix (Z = 1,2) with & and Z@:/&/, (p =

1.2,... , M) the values of the potential and its normal derivative

at the nodal point of the pth element. Denoting the elements of

[Ai]M.M and [l?,]M~L, by A~q and B:’, the elements mainly

involve the following computations

~ csu (n&)/n and ~ csn (nO/n2 (5)
rz=l .=1

where csn represents sin or cos function, ~ is the normalized x-

coordinate with O < & < 2rr. For example,

‘!q=(4/~)~(,/n)sin(n~x,/b)
. exp (–nmh/b) cosh (n~h/b)

~ [COS(nrTz~/b) - cos (nmz~/~)] (P # q) (6a)

A;p = 1 (6b)

where (%P, h ) and (zq, h) are the coordinates of nodal points of

the pth and gth elements respectively. z: = Zq + (wq /2) and
—

Zq = x, — (~, /2), with Wq the width of the @h element.
Following the procedures in [3], we can obtain the final boundary

matrix equation in the form

[A][X] = [B] (7)

where [A] is a 2M x 2M matrix, [X] contains the unknown quantities,

and [1?] is the known right-hand vector. Note that 17~ is divided

into M’ segments in each region. The infinite sums in (6a)

be simplified by the geometric-series method of reference [6].

example, (6a) is changed into:

A!” = (2/rr) ~(1/n) [sin (7r7rzp/fi) cos (n7r.c~/5)
.=1

– sin (rJrr.XP/b) cos (rz7r~>)/b]

~exp (–2rr Th/b)

can

For

(8)

In this form, the sums are typically convergent within three digits

by taking less than 5 terms. Therefore, the computation time for

each off-diagonal element calculation is compatible with that for off-

diagonal element calculation formulated using the free space Green’s

function. In the later case, calculation time is saved by use of four-

points Gaussian quadrature [2] or by way of pulse expansion with the

integrals solved analytically. However, the overall calculation time is

considerably larger since the required matrix size is much larger than

that in the present method.

The concept shown here is rather general. Many cases can be

treated simply by modifying the adopted Green’s function. For

example, symmetry conditions may be applied in deriving the even or

odd mode Green’s function satisfying @Z/On = O or ~, = O in the

symmetrical plane while applying (2). Finite metallization thickness

can also be treated with a modified boundary contour as suggested

in [3].
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Fig. 1. Cross section of a shielded microstrip line.
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Fig. 2. Line source in a rectangular trough region. (a) For region 1. (b) For

region 2.

TABLE I

COMPARISONOF CHARACTERISTICIMPEDANCE (20) AND NORMALIZED

GUIDED WAVELENGTH VALUES WITH RESULTS OBTAINED BY
OTHER METHOD (DIMENSIONS IN MILS, b = 20h + w, h’ = loh )

Agf A” z“ Ag/Ao
whe, $ [7] this method this method

(:6=;) (t= 2) (;;9;) (t=2)
10 67 2.9 165.9 0.693 166.8 0.693
15 14 4.7 67.2 0.546 68.5 67.6 0:549 0.547
22 19 4.3 67.2 0.567 68.5 67z 0.569 0.568
20 31 4.7 84.4 0.554 86.6 84.z 0,553 0.553

III. NUMERICAL RESULTS

Analysis of microstriphne has been presented in the literature

extensively, For the simple structure shown in Fig. 1, calculations

by the present method are lkted in Table 1, As EM theory shows

that fields vary rapidly near strip-conductor edges. The adoption of

norqmiform discretization was also studied. We symmetrically bisect

the strip, and divide each half strip into p segments. Assume that

the width of the segment nearest to the strip edge is s and the

ratio of the width of any two neighboring segments is t. we have

s = W(I — t)/[2(1 – tI’)] for t > land s = w/2p for t = 1. In our

calculations, AB was divided into 14 segments, while BC and AF

were divided into 14 segments individually. Comparing to [7], it is

noted from Table I that results by nonuniform discretization (choose

t = 2) have more good agreement.

IV. CONCLUSION

A new modified boundary element method is applied to the

analysis of shielded microstripline. The new method is based on
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the choice of an adjoint field which satisfies part of the required

boundary conditions. In the numerical analysis, the resulting matrix

is considerably reduced (for example, compared with [3]). The

computation time is also largely reduced by taking the Maclaurin

series expansion forms of the infinite sums.

The formulation shown here is rather general. It can in principle be

applied to various structures involving inhomogeneous dielectric me-

dia (e.g., multiconductor transmission lines in multilayered dielectric

media). Finite metallization thickness can also be considered with a

modhied choice of the contour as already suggested in [3].
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CAD of T-Septum Waveguide Evanescent-Mode Filters

Vladimir A. Labay and Jens Bornemann

Abstract— Thk paper presents a mode-matching-based design of

evanescent-mode waveguide filters with T-septum shaped metal inserts.

Owing to the wideband characteristics of the T-septum waveguide, the
proposed design constitutes a significant improvement over common

evanescent-mode filters with respect to both size reduction and stopband

behavior. The theoretical approach is verified at the example of a three-

resonator 8.8.GHz filter prototype of less than 3/4 inch length. The second
passband is beyond 27 GHz. Since the design procedure takes higher-
order mode interactions into account, good agreement between theory
and experiment is obtained over the entire measurement range between
8.2 and 40 GHz.

I. INTRODUCTION

Evanescent-mode filters are constructed from resonators within a

below-cutoff waveguide section and rectangular waveguide disconti-

nuities for connection to a standard-size input/output guide [ 1]–[5].

The resonators are formed by introducing appropriate obstacles such

as capacitive screws [1], round posts [2], dielectric blocks [3], ridges
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[4] or E-plane fins [5] at suitable intervals along the below-cutoff

section. While in a given frequency band, the filter response improves

with reducing the size of the evanescent-mode guide, two problems

are immediately associated with the resonators of such filters. First,

their cross-sections need to be specifically shaped in order to allow

for a considerable reduction in cutoff frequency and, secondly,

simplicity in shape must be maintained to apply efficient computer-

aided modelling and design procedures. A structure, which satisfies

these requirements but has not yet been used in evanescent-mode

configurations, is the T-septum waveguide, e.g., [6].

Therefore, this paper focuses on the computer-aided design of

T-septum waveguide evanescent mode filters. By incorporating the T-

septum eigenfunctions [7] into a mode-matching-based design routine

[8], higher-order mode interactions at all discontinuities are included,

thus resulting in close agreement between predicted and measured

filter responses. Another advantage of this design is its remarkably

small size.

II. THEORY

The mode-matching technique is applied to calculate the general-

ized scattering matrix of the T-septum waveguide evanescent-mode

filter. The electromagnetic field in each longitudinal filter section is

derived from the z-components of the magnetic and electric vector

potential. Since the method of analysis together with the potential

and eigenfunctions of the rectangular waveguide sections are already

given in [8], only the T-septum waveguide cross-section functions

need to be presented here, Choosing the subregion division of the

cross-section according to Fig. 1 and applying electric and magnetic

wall symmetry at y = O and ~ = a/2, respectively, the cross-section

functions yield:

‘-] Sin{+-%cos{:y}Th(.z, y) = ~ A:

1=0 k:l VTT-Kl

{}

2mrr
lb–l Cos ~Y

+ ~ A: COS {k::.r}
d-nl=o

N–1
{

=(y–b,)

+ ~ A;ll
Cos b – bz

cos{k::~(.r – a2)}
}

d=n=o

(1)

(2)

Amplitude coefficients A’, D’ and separation constants k: ( i E

[1, 11, 111]) are determined by the solution of the characteristic

matrix equation [7] and subsequent power normalization [8]. The

generalized scattering matrix of the overall structure is obtained by

cascading the individual scattering matrices of the discontinuities

and homogeneous sections involved, e.g., [8]. Sufficient convergence

behavior is obtained with 35 TE and TM modes, M = 20 expansion
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